If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+24x+4=0
a = 15; b = 24; c = +4;
Δ = b2-4ac
Δ = 242-4·15·4
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{21}}{2*15}=\frac{-24-4\sqrt{21}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{21}}{2*15}=\frac{-24+4\sqrt{21}}{30} $
| -2z+4=-3z+9 | | 51+c=54 | | 6=1/5(3)+b | | 9x+29=180 | | −10=14+12v | | -12.41+b=-0.06 | | (4y+2)+5y=202 | | 180+3x=360 | | 35a=5 | | 4y-15+y+18+2y-10=180 | | 8^-x=64 | | w^2+17w+37=0 | | x^2=142 | | 2^x-5=32 | | 2^2x+8=3^x-44 | | 8x+38=-7(-3-2x)-1 | | 6(2x+1)(x-7)-(3x-2)(4x-1)=23 | | Y=1/5+bC(3,6) | | 43+t+17+2t-16=180 | | 10x+48=13x+18 | | 17.02+12.1m=2.7m–14.7–10.58 | | d=85d-25 | | 73+66+2y+40=180 | | 2x-3.5=15 | | 7+3x=5×-5 | | 32/135=x/60 | | 2n+13=-23 | | 2p-6+30+3p=180 | | 7=42-5n | | 5/6x4= | | 3/8+p=-1/5 | | 6y-14+y+19+5y=180 |